Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{P} 1-\mathrm{Cl}$	$1.796(4)$	$\mathrm{P} 1-\mathrm{C} 19$	$1.795(4)$
$\mathrm{Pl}-\mathrm{C} 7$	$1.794(4)$	$\mathrm{O} 1-\mathrm{C} 21$	$1.239(7)$
$\mathrm{Pl}-\mathrm{C} 13$	$1.789(4)$	$\mathrm{O} 2-\mathrm{C} 21$	$1.210(7)$
$\mathrm{Cl}-\mathrm{Pl}-\mathrm{C} 7$	$108.9(2)$	$\mathrm{C} 7-\mathrm{Pl}-\mathrm{Cl} 9$	$109.4(2)$
$\mathrm{Cl}-\mathrm{Pl}-\mathrm{C} 13$	$107.1(2)$	$\mathrm{O} 1-\mathrm{C} 21-\mathrm{O} 2$	$126.1(6)$
$\mathrm{Cl}-\mathrm{Pl}-\mathrm{C} 19$	$110.8(2)$	$\mathrm{O} 1-\mathrm{C} 21-\mathrm{C} 20$	$116.1(5)$
$\mathrm{C} 7-\mathrm{Pl}-\mathrm{Cl} 3$	$110.8(2)$	$\mathrm{O} 2-\mathrm{C} 21-\mathrm{C} 20$	$117.8(6)$

H atoms bonded to C were treated using a riding model with $U(\mathrm{H})=1.5 U_{\mathrm{cq}}(\mathrm{C})$. Water H atoms were placed at calculated positions with $U=0.05 \AA^{2}$. For the O 3 water molecule, one of the H atoms is necessarily disordered over two positions.

Data collection: CAD-4/PC (Kretschmar, 1994). Cell refinement: CELDIM (Enraf-Nonius, 1988). Data reduction: XCAD4 (Harms, 1997). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL97.

The author thanks the National Science Council for R\&D (IRPA 09-02-03-0004 and IRPA 09-02-03-0371) for supporting this work.

Supplementary data for this paper are available from the $I U C r$ electronic archives (Reference: DA 1039). Services for accessing these data are described at the back of the journal.

References

Chen, X.-M. \& Mak, T. C. W. (1992). Polyhedron. 11, 2567-2570.
Chen, X.-M. \& Mak, T. C. W. (1994). Inorg. Chem. 33, 2444-2447.
Chen, X.-M., Wu, Y.-L., Tong, Y.-X. \& Huang. X.-Y. (1996). J. Chem. Soc. Dalton Trans. pp. 2443-2448.
Denny, D. B. \& Smith, L. C. (1962). J. Org. Chem. 27. 3404-3408.
Enraf-Nonius (1988). CAD-4 VAX/PC Fortran Sistem. Operator's Guide to the Enraf-Nonius CAD-4 Diffractometer Hardware, its Software and the Operating System. Enraf-Nonius, Delft, The Netherlands.
Harms, K. (1997). XCAD4. Program for the Lp Correction of Nonius Four-Circle Diffractometer Data. University of Marburg, Germany.
Irvine, D. J., Preston, S. A., Cole-Hamilton. D. J. \& Barnes, J. C. (1991). J. Chem. Soc. Dalton Trans. pp. 2414-2418.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kretschmar, M. (1994). CAD-4/PC. Version 1.5c. University of Tubingen, Germany.
Li, S.-L. \& Mak, T. C. W. (1995). J. Chem. Soc. Dalton Trans. pp. 1519-1524.
Li, S.-L. \& Mak, T. C. W. (1997). J. Chem. Crystallogr. 27, 91-97.
Ng, S. W. (1998). Unpublished results.
Ng, S. W., Chen, X.-M. \& Yang. G. (1998). Acta Crıst. C54. 13891393.

Ng, S. W. \& Kumar Das, V. G. (1993). Main Group Met. Chem. 16. 81-86.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Actal Cryst. A24, 351-359.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Tsivunin, V. S., Zhegalina, L. V. \& Krut-skii. L. N. (1973). J. Gen. Chem. USSR, 43, 436-437. (Engl. Transl.)

Acta Cryst. (1999). C55, 648-650

Butyldichloro(phenylethynyl)tellurium(IV)

J. Zukerman-Schpector, ${ }^{a, b *}$ Robinson L. Camillo, ${ }^{a}$
Miguel J. Dabdoub, ${ }^{c}$ Mauro L. Begnini ${ }^{c}$ and I. Caracelli ${ }^{b}$
${ }^{a}$ Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Departamento Quimica, Universidade Federal de São Carlos, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil, and ${ }^{b}$ Instituto de Química-USP, SP, Brazil, and 'Laboratório de Síntese de Compostos Organocalcogênios, Departamento de Química, FFCLRP. Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, Brazil. E-mail: julio@power.ufscar.br

(Received 15 September 1998; accepled 6 November 1998)

Abstract

In the title compound, $\left[\mathrm{TeCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{C}_{8} \mathrm{H}_{5}\right)\right]\left(\mathrm{C}_{12} \mathrm{H}_{14}-\right.$ $\mathrm{Cl}_{2} \mathrm{Te}$), the intramolecular geometry around the $\mathrm{Te}^{\mathrm{IV}}$ is pseudo-trigonal bipyramidal, with the Cl atoms in the apical positions and the Te lone pair occupying the fifth position in the equatorial plane. Taking into account the intermolecular secondary $\mathrm{Te} \cdots \mathrm{Cll}$ contact of 3.266 (1) \AA, trans to the $\mathrm{Te}-\mathrm{C}_{\text {vinyl }}$, the structure may be regarded as pseudo-octahedral. Distances and angles are: $\mathrm{Te}-\mathrm{Cl} 2.486(1)$ and 2.551 (1), $\mathrm{Te}-\mathrm{C} 2.020$ (3) and 2.146 (3) \AA; $\mathrm{Cl}-\mathrm{Te}-\mathrm{Cl} \mathrm{173.81} \mathrm{(3)} \mathrm{Cl}-\mathrm{Te}-$, 89.94 (10), 86.59 (9), 87.84 (10) and 87.98 (9), and C-$\mathrm{Te}-\mathrm{C} 97.66(13)^{\circ}$. All of the C atoms lie in a plane, with the Te atom displaced 0.2220 (2) \AA from the plane in the direction of Cl 2 .

Comment

Butyltelluroalkynes are important intermediates in organic synthesis, since they permit the stereospecific synthesis of vinylic teliurium species (Comasseto et al., 1997), which in turn are precursors of other vinyl metal derivatives such as vinyl lithium, copper, zinc, magnesium, sodium and calcium. In previous papers, we reported the synthesis (Dabdoub et al., 1988) and reactions (Dabdoub \& Comasseto, 1988; Dabdoub \& Cassol, 1995) of these acetylenic tellurium species. Reaction of acetylenic tellurides with Br or I produces organyltellurium trihalides and the corresponding 1,1,2-trihaloethylenes, instead of the expected diorganyl tellurium dihalides (Dabdoub et al., 1990). However, reaction of telluroacetylenes with an excess of sulfurylchloride in petroleum ether at 273 K affords the corresponding dichlorotelluroacetylenes in high yield. In this way, the phenylethynyl(butyltelluro) dichloride was obtained in 97% yield. Due to our interest in the structure of organotellurium compounds in general (ZukermanSchpector et al., 1995; Zukerman-Schpector, Cara-
celli, Dabdoub \& Dabdoub, 1996; Zukerman-Schpector, Caracelli, Dabdoub, Dabdoub \& Pereira, 1996), and diorganyltelluro dichlorides in particular, the crystal structure of the title compound, (I), which was obtained as described by Dabdoub et al. (1990), was determined.

(I)

In (I), the $\mathrm{Te}^{\mathrm{IV}}$ atom adopts a primary four-coordinate geometry based on a pseudo-trigonal bipyramidal polyhedron, formed by four bonds to two Cl and two C atoms of the ligands and one lone pair of electrons which, together with the C atoms, occupy equatorial sites, while the Cl atoms occupy axial positions. This configuration is in complete agreement with the valenceshell electron-pair repulsion (VSEPR) model (Gillespie, 1972). The average quadrupole angle, α_{4}^{E}, for the Te lone pair of electrons is 112.13°, a value typical for $\mathrm{Te} X_{4} E$ configurations (Zukerman-Schpector et al., 1995, and references therein). The $\mathrm{Te}-\mathrm{Cl}$ axial lengths are 0.19 and $0.13 \AA$ longer than the sum of the normal covalent radii ($2.36 \AA$; Ziolo \& Troup, 1983), and may be compared with the values found in other $\mathrm{TeCl}_{2} R R^{\prime}$ type compounds (Dabdoub et al., 1990; Zukerman-Schpector et al., 1995; Singh et al., 1990). The $\mathrm{Te}-\mathrm{C}$ bond distances of 2.146 (3) and 2.020 (3) \AA are close to the predicted values of 2.142 and $2.000 \AA$, using the Pauling (1960) radius for Te $(1.37 \AA), \mathrm{Csp}^{3}(0.772 \AA)$ and Csp ($0.630 \AA$). The $\mathrm{C}-\mathrm{Te}-\mathrm{C}$ angle of $97.66(13)^{\circ}$ is in the range found in other compounds (Zukerman-Schpector, Caracelli, Dabdoub, Dabdoub \& Pereira, 1996).

There is a secondary intermolecular interaction between Te and $\mathrm{Cl} 1^{\mathrm{i}}$ [symmetry code: (i) $-x,-y, 1-z$] of $3.266(1) \AA$. This distance is less than the sum of the van der Waals radii (Pauling, 1960) of the Te and Cl of $4.00 \AA$, and is slightly longer than the Te $\mathrm{Cl}_{\text {bridging }}$ distances found in triphenyltellurium chloride [3.142 (1)-3.234 (1) \AA; Ziolo \& Extine, 1980]. With this interaction, which is approximately trans to $\mathrm{C}_{\text {vinyl }}$ $\left[\mathrm{Cl}-\mathrm{Te} \cdots \mathrm{Cll}^{\mathrm{i}} 169.50(11)^{\circ}\right.$], the arrangement about the Te atom should be described as a distorted pseudooctahedron, with the lone pair of electrons occupying the fourth equatorial site (Singh et al., 1990), as seen in Fig. 1. This secondary bond links the molecules into chains parallel to \mathbf{c}. The distortions of the coordination geometry from the ideal octahedral values (90 and 180°) can be explained in terms of the lone pair of electrons occupying an equatorial position between Cl and $\mathrm{Cl1} 1^{i}$. The $\mathrm{Cl}-\mathrm{Te}-\mathrm{C}$ angles are slightly less than 90°, so that the $\mathrm{Te}-\mathrm{C}$ bonds are bent slightly away from the lone pair, as might be expected from the VSEPR theory, resulting in a $\mathrm{Cl}-\mathrm{Te}-\mathrm{Cl}$ angle of $173.81(3)^{\circ}$.

Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids [symmetry code: (i) $-x,-y, 1-z$]. H atoms have been omitted for clarity.

The carbon moiety is essentially planar, as can be seen by the $\sigma_{\mathrm{av}}\left\{\sigma_{\mathrm{av}}=\left[\left(\sum_{i} d_{i}^{2}\right) /(N-3)\right]^{1 / 2}\right\}$ value of $0.036 \AA$. The greatest deviation is that of the Te atom, which is displaced 0.2220 (2) \AA from the plane, towards the Cl2 atom. The acetylenic $\mathrm{Cl}-\mathrm{C} 3$ bond length of 1.196 (4) \AA is very close to the value of 1.203 (2) \AA found for $\mathrm{C} \equiv \mathrm{C}$ in acetylene (Nes \& Bolhius, 1979) and may be compared with the value of 1.210 (11) \AA found in $\operatorname{bis}(p$ methoxyphenyltelluro)ethyne (de Matheus et al., 1991).

Experimental

The title compound was synthesized as described by Dabdoub et al. (1990).

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{Te}$
$M_{r}=356.73$
Triclinic
$P \overline{1}$
$a=8.7610(5) \AA$
$b=8.8907$ (4) \AA
$c=10.4403(6) \AA$
$\alpha=112.419$ (4) ${ }^{\circ}$
$\beta=106.101(5)^{\circ}$
$\gamma=96.407(4)^{\circ}$
$V=700.30(6) \AA^{3}$
$Z=2$
$D_{x}=1.692 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
ψ scans (North et al., 1968)
$T_{\text {min }}=0.685, T_{\text {max }}=0.781$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=2.4-25.5^{\circ}$
$\mu=2.474 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Irregular
$0.35 \times 0.25 \times 0.10 \mathrm{~mm}$
Colourless

2481 reflections with
$F^{2}>2 \sigma F^{2}$
$R_{\text {int }}=0.008$
$\theta_{\text {max }}=25.46^{\circ}$
$h=-10 \rightarrow 10$
$k=0 \rightarrow 10$
$l=-12 \rightarrow 11$

2786 measured reflections 2605 independent reflections

3 standard reflections frequency: 30 min intensity decay: 0.4%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.075$
$S=1.122$
2605 reflections
143 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0534 P)^{2}\right. \\
\quad+0.2809 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{C}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=1.286 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-1.252 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: none } \\
\text { Scattering factors from } \\
\text { International Tables for } \\
\text { Crystallography (Vol. C) }
\end{gathered}
$$

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Te}-\mathrm{Cl}$	$2.020(3)$	$\mathrm{Te}-\mathrm{Cl} 1$	$2.551(1)$
$\mathrm{Te}-\mathrm{C} 2$	$2.146(3)$	$\mathrm{Cl}-\mathrm{C} 3$	$1.196(4)$
$\mathrm{Te}-\mathrm{Cl} 2$	$2.486(1)$		
$\mathrm{C} 1-\mathrm{Te}-\mathrm{C} 2$	$97.66(13)$	$\mathrm{Cl}-\mathrm{Te}-\mathrm{Cll}$	$87.84(10)$
$\mathrm{C} 1-\mathrm{Te}-\mathrm{Cl2}$	$89.94(10)$	$\mathrm{C} 2-\mathrm{Te}-\mathrm{Cl1}$	$87.98(9)$
$\mathrm{C} 2-\mathrm{Te}-\mathrm{Cl} 2$	$86.59(9)$	$\mathrm{Cl} 2-\mathrm{Te}-\mathrm{Cll}$	$173.81(3)$

H atoms were refined with fixed geometry, each riding on a carrier atom, with an isotropic displacement parameter equal to 1.5 (for methyl-H atoms) or 1.2 (for the other H atoms) times that of the carrier atom. The highest peak and the deepest hole in the final difference Fourier map were at 0.95 and $0.94 \AA$ from Te , respectively.

Data collection: CAD-4 Software (Enraf-Nonius,1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ZORTEP (Zsolnai, 1995). Software used to prepare material for publication: SHELXL97.

This work has received partial support from FAPESP (Procs. 94/1213-5 and 96/2770-0), CNPq and CAPES. The X-ray facility at the Instituto de Química-USP was established with the assistance of FAPESP (94/2061-4).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GS1025). Services for accessing these data are described at the back of the journal.

References

Chadha, R. K., Drake, J. E. \& Khan, M. A. (1983). Acta Cryst. C39, 45-48.
Comasseto, J. V., Lo, W. L., Petragnani, N. \& Stefani, H. A. (1997). Synthesis, 4, 373-403.
Dabdoub, M. J. \& Cassol, T. M. (1995). Tetrahedron, 51, 1297112982.

Dabdoub, M. J. \& Comasseto, J. V. (1988). Organometallics, 7, 84 87.

Dabdoub, M. J., Comasseto, J. V., Barros, S. M. \& Moussa, F. (1990). Synthetic Commun. 20, 2181-2183.
Dabdoub, M. J., Comasseto, J. V. \& Braga, A. L. (1988). Synthetic Commun. 18, 1979-1983.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf--Nonius, Delft, The Netherlands.
Gillespie, R. J. (1972). Molecular Geometr.: London: Van Nostrand Reinhold.
Matheus, M. de. Torres. L., Cabiativa, C.. Fuertes, A. \& Miravitlles, C. (1991). Acta Cryst. C47, 977-980.

Nes, G. H. van \& Bolhius, F. van (1979). Acta Cryst. B35, 2580-2593.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Crist. A24, 351-359.
Pauling, L. (1960). The Nature of the Chemical Bond. 3rd ed. Ithaca: Cornell University Press.
Sheldrick. G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Singh, H. B., Sudha, N., West, A. A. \& Hamor, T. A. (1990). J. Chem. Soc. Dalton Trans. pp. 907-913.
Ziolo, R. F. \& Extine, M. (1980). Inorg. Chem. 19, 2964-2967.
Ziolo, R. F. \& Troup. J. M. (1983). J. Am. Chem. Soc. 105, 229-235.
Zsolnai, L. (1995). ZORTEP. An Interactive Molecular Graphics Program. University of Heidelberg. Germany.
Zukerman-Schpector. J., Caracelli, I.. Dabdoub, M. J. \& Dabdoub, V. B. (1996). J. Chem. Crystallogr. 26, 389-392.

Zukerman-Schpector, J., Caracelli, I., Dabdoub, M. J., Dabdoub, V. B. \& Pereira, M. A. (1996). Acta Cryst. C52, 2772-2774.
Zukerman-Schpector, J., Comasseto, J. V. \& Stefani. H. A. (1995). Acta Cryst. C51, 861-863.

Acta Cryst. (1999). C55, 650-652

Methyl (2S)-2-[(5R)-3,5-diphenyl-4,5-di-hydro-1,2,4-oxadiazol-4-yl]-3-phenylpropanoate

Jiaxi Xu, Xiaoyu Li, Zhemin Wang, Qingchuan Yang and Chunhua Yan
College of Chemistry and Molecular Engineering, Peking
University, Beijing 100871, People's Republic of China.
E-mail: jxxu@chemms.chem.pku.edu.cn

(Received 14 August I998; accepted 23 November 1998)

Abstract

In the title compound, $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$, the 4,5-dihydro-1,2,4-oxadiazole ring system is in an envelope conformation with the $\mathrm{C} 1, \mathrm{~N} 1, \mathrm{C} 8$ and N 2 sets of atoms in a common plane with Ol 0.110 (3) \AA out of this plane. The chiral C atom in the five-membered ring, C 1 , is in the R configuration, which was identified by referring to the known configuration of the atom C 15 in the (S)-phenylalanine moiety.

Comment

4,5-Dihydro-1,2,4-oxadiazole derivatives are important pharmaceutical agents with antiviral (Franco et al.,

